Category Archives: Uncategorized

Sidebar: More About Viscosity and the Movement of Liquids

When viscous liquids flow over a surface they often form layers of different velocity called laminar flow. Check out this demonstration of laminar flow using a Couette cell. Be patient, it is worth the wait.

Isn’t it cool how the apparatus reverses and the droplets go back to looking like how they did when they were added.

Laminar flow might have been part of what was happening in our ketchup experiment.

Sidebar: Burning Steel or Iron Wool

Remember our demonstration of burning iron wool as an example of a composition reaction (Session III-1 in the lab manual)? Here’s a bit more information about what you saw.

Chemical Equations

First, when the iron in the wool reacted with the oxygen in the air it formed iron oxide, but what was the equation? Was it 2 Fe + O2 → 2 FeO ?

Because iron can be in different states – iron (II) and iron (III) – there are actually three potential products. FeO is one product, but other reactions might be:

4 Fe + 3 O2 → 2 Fe2O3
3 Fe + 2 O2 → Fe3O4

We can not tell which products we obtained by merely looking at the results.

By the way, the second equation above is for rust. We were creating rust more quickly because we added heat to get the reaction started. You can also speed up rust with salt water (see a simple experiment at Growing With Science blog.)

Survival Tool

FYI: If you ever are in a survival situation and just happen to have steel wool and a 9-volt battery, you can use your chemistry knowledge to start a fire!

Want to see the reaction again? Check this NurdRage video:

 

Please let me know if you have any questions.

Lab 5: Chemistry Unleashed

Sublimation.

Plasma.

We’ve learned the terms, and now it’s time to explore dry ice, a plasma ball, and a few other cool chemistry devices and substances.

Lab Safety:

Even though we won’t have a formal lab write up this week, we will need to take laboratory safety very seriously.

For the dry ice:

  • Always use padded gloves (not the thin chemical kind) and tongs when moving dry ice. Never touch it with your bare skin. At -109° F, it can give you a severe burn.
  • Always use eye protection with dry ice.
  • You know not to eat or drink in lab, but particularly do not eat or drink anything with dry ice in it.
  • We will need to keep the dry ice outside the room so it doesn’t build up too much carbon dioxide gas in an enclosed space.

For the plasma ball and fluorescent light bulb:

  • Both these items are made out of glass. Please treat them gently and absolutely no horseplay!
  • We will be using eye protection.
  • The plasma ball can give you a burn to your fingertip if you place a metal item on it and then hold your finger over it.
  • Keep the plasma ball away from water and make sure your hands are dry.

For the acetone and Styrofoam:

  • Acetone is flammable. Keep it away from the plasma ball or any source of flame or sparks. Cell phones are potential sources of sparks.
  • We will also be using the acetone outside to reduce the chance of breathing fumes.
  • Please wear your eye protection.

For nitinol wire, be careful of the hot water and also keep your face away from the wire when you add it to the hot water. It can move violently and rapidly.

Part 1. Exploring solid carbon dioxide or dry ice.

Need:

  • Dry ice from the grocery store
  • Cooler (don’t close lid tightly)
  • Oven mitts and or heavy gloves
  • Metal tongs
  • Optional: metal knife or spoon
  • Quarter

Here are some suggestions for dry ice experiments (direct link):

If that isn’t enough, you can also make dry ice sing by placing a metal spoon on it (direct link).

Since you already have the dry ice, might as well try the next activity, too.

Part 2. Creating a dry ice and acetone cooling bath (-108° F).

Materials:

  • Glass beaker
  • Dry ice
  • Acetone
  • Tongs
  • Heavy gloves

Put about 50 mL of acetone in a beaker and then slowly add golf ball or smaller-sized pieces of dry ice using gloves and/or tongs.

This “cool” Flickr video shows you the preparation and use of an acetone cooling bath.

Also, add Styrofoam to acetone.

Part 3. Experiments with a plasma ball.

Materials:

  • Plasma ball
  • Extension cord
  • Fluorescent tube
  • Diffraction grating

Here are some good plasma ball demos (direct link):

Part 4. Nitonol Wire

  • Nitinol wire sample
  • 2 glass beakers (if have microwave)
  • Saucepan  to heat water (if have stove)
  • Ice
  • Water

This video might give you some ideas (direct link):

How about making a Nitinol Wire Inchworm (direct link)?

Lab 1 Density of Liquids: Soft Drinks and Water

Our laboratory today was inspired by the large glass of soft drink featured in the beginning of Chapter 1 of the textbook. Keep in mind what you read about “Soda Pop Fizz” while conducting these observations and experiments.

For our first laboratory, I’ll help you fill out your notebook by writing out the sections you will need to add in purple. You don’t need to write everything out word for word, but make sure what you write is understandable to someone else who might read it.

Experimental Title: Lab 1. Density of Liquids: Soft Drinks and Water

Date of laboratory:  To be performed June 3, 2014

Purpose: We are going to look at a common physical property of substances, density, and how it could be used to identify an unknown substance in the real world. At the same time, we will be learning how to use some common laboratory equipment and practice measuring volume of liquids accurately.

The purpose of this laboratory is to determine and compare the density of regular and diet soft drinks to water, as well as investigate how density could be used to identify an unknown substance.

Introduction:

Below is a video that explains density nicely. Before you watch:

Note 1:  You will not be responsible for the terms intensive and extensive property in this course, because they are not used in the textbook. Just be aware that those are ways to categorize properties of matter based on whether they change with the amount of matter present or not.

Note 2:  We will be using the method he demonstrates for finding the volume of an irregularly-shaped object in lab next week.
(There is a pop-up ad).

 

You may want to summarize what you have learned about density in the Introduction section of your notebook. At the very least include:

Density can be calculated using the formula:

density= mass (g)/volume(mL)

Because the volume of a substance changes with temperature, density also changes with temperature.

Special safety concerns for Lab 1:

  • Although we will not need goggles or gloves today, please do not ever eat or drink anything during chemistry laboratories.
  • If anything spills, please clean it up immediately with a paper towel and let your instructor know.
  • If glass breaks, do not pick it up with your bare hands. Notify your instructor immediately.

Materials:

  • Large plastic bin or sink
  • Cans of regular soft drink
  • Cans of diet soft drink
  • Unknown soft drink labelled A
  • Unknown soft drink labelled B
  • Water
  • Graduated cylinders
  • Table top scales
  • Transfer pipette
  • Calculator

Procedures:

Part 1. Observe the density of soft drink cans placed in a large container filled with tap water.

Do you expect the cans of soft drink to float, sink, or maintain neutral buoyancy in tap water? Given that the cans likely contain an equal amount of aluminum and gases, do you expect any differences in how the cans will behave?

Procedure 1.

Fill a plastic storage bin with tap water. Place cans of regular soft drink and diet soft drink in the water. Observe whether the cans float or sink.

Leave room to record your observations in your notebook. Did what you observe match your predictions?

soft-drink-bottles
Public Domain Photograph by Peter Griffin at PublicDomainPictures.net

Part 2. Determine the density of unopened cans of soda

Procedure 2.

  1. Turn on the Salter kitchen scale.
  2. Make sure it reads zero.
  3. Place an unopened can of soda on the scale.
  4. Record the kind of soda in your notebook.
  5. Read and record the mass of the can in grams.
  6. Locate the volume of the can in ml and record it in your notebook.
  7. Repeat steps 2-6 until you’ve weighed 4 cans of regular soda and 4 cans of diet soda
  8. Using a calculator, calculate the density.

Include a table like this one in your notebook, so you’ll have room to record your data.

density-table

Soft drinks are actually complex mixtures containing a variety of substances such as colors, flavors, acids, sweeteners, preservatives, and caffeine. Remember from the life hacks video in the first lesson? It revealed that soft drinks contain phosphoric acid, which gives soft drinks a tangy taste. Phosphoric acid can also acts as a preservative, keeping the contents of the bottle fresh. Which of these ingredients, if any, might explain the densities we observed?

Read the nutrition facts of the a regular soda and a diet soda. Do you notice any large differences between diet and regular? How much of that substance is in regular soda? How much in diet? Is it safe to assume that the other ingredients will be roughly the same between diet and regular sodas of the same brand?

Part 3. Determine the density of tap water

In this part, you will be measuring the volume of water as well as weighing it.

Hint 1:  When using a graduated cylinder, remember that water tends to creep up the sides of the container. This forms what is called a meniscus.

meniscusAlways take your readings at eye level.

Hint 2:  Because many people will be using the scales, go ahead and weigh your group’s graduated cylinder prior to use rather than using the tare feature on the scale. Remember to subtract that weight from your total each time.

Hint 3: There may be a residual of liquid in your graduated cylinder. If the liquid is another substance, other than the one you are measuring, that residual might interfere with your results. Rather than trying to wash and dry the graduated cylinder each time, an old chemistry trick is to simply rinse it twice with a small amount of the test liquid before proceeding.

For example, you just took the density of water and there is a few drops of water left in the bottom. Now you want to measure the mass of regular Pepsi®. Pour a small amount of Pepsi® into the cylinder, swirl it around and discard it (Never pour it back into the original container!) Repeat, and then you will be ready to proceed.

Procedure 3.

  1. Obtain a graduated cylinder, transfer pipette and beaker full of water.
  2. Weigh the graduated cylinder and record the mass in grams.
  3. Fill the graduated cylinder with 20 ml of water. Use the transfer pipette to fill to exactly 20 ml. Record the volume in your notebook.
  4. Weigh the cylinder plus the water and record the mass in grams.
  5. Subtract the weight of the graduated cylinder.
  6. Repeat steps 3 -5 with 40 ml of water and 60 ml of water.
  7. Calculate the density for each sample.

Example table for data:

water-density-table

Now graph your data. The volume goes on the x-axis and the mass on the y-axis. (If you don’t have a quadrille-ruled notebook, see you instructor for graph paper).

water-density-graph

Water is known to have a density very close to 1 g/ml. Is this what you observed? What factors might have changed the densities? What errors might have occurred during measuring?

Check with the instructor for a density of water chart. If your values are significantly different, revise your techniques using the hints above and try again.

You might want to use this information to help you with the next part.

Part 4. Identify unknown samples.

Scenario:  Imagine you are working in a restaurant. Someone has filled two taps, one with diet soft drink and one with regular soft drink. Unfortunately, no one knows which is which. The store manager doesn’t want to serve the public the wrong soft drink, and the two taste similar enough that there are some questions. Should she throw out the soft drinks, or can you tell which is regular and which is diet using chemistry?

You will be given:

  1. Recently-opened soft drink labelled “unknown A”
  2. Recently-opened soft drink labelled “unknown B”
  3. Previously-opened soft drink of type A labelled “flat unknown A”
  4. Previously-opened soft drink of type B labelled “flat unknown B”
  5. Equipment from previous parts of this lab

Use what you have learned in the previous parts of this lab to design a procedure to figure out which is regular soda and which is diet.  Be sure to take careful notes of what you do and what your results are.

When you are finished, check with the instructor to see if your techniques correctly identified the types of soda and saved the restaurant some money.

Conclusions:

Once you have completed the four parts, sit down and write a sentence or two to explain the results of each part.

Discussion:

Record any thoughts you have about the experiments, including:

  • Possible improvements to the procedures or how to tweak techniques
  • How the results differed from your expectations
  • Suggestions for other experiments
  • What key concepts you learned about density of liquids

We’ll go over the key concepts together at the end of lab.

Thank you for going over the lab ahead of time and getting your lab notebook ready. It will definitely help our first lab go more smoothly.

Please leave a comment or send an e-mail if you have any questions before our first meeting.

To Do List for April

Thank you to everyone who participated in the first organizational meeting. It was nice to meet/see you all.

check

To keep on track, let’s recap what you need to do this month:

  1. Download the CK01A Standard/Honors Home School Chemistry Laboratory Kit manual at The Home Scientist, LLC.
  2. Obtain a copy of Introductory Chemistry (4th Edition) by Nivaldo J. Tro.
  3. Round up the following supplies:
  • One pair splash goggles per student
  • Chemical resistant nitrile or latex gloves (If you interested in learning more about gloves try this fact sheet from Grainger)
  • Bound notebook (not 3-ring)

Optional: Download the free online textbook CK-12 Chemistry (Second Ed.) We can use it as a resource.

Note:  There are other free online textbooks under the “Flexbook® Textbooks” tab at the CK-12 website.

We will start using some of these items next month as we prepare for the first laboratory.

Please leave a comment if you have any questions.

A little chemistry humor:

Two atoms were walking down the street when the first one exclaimed, ” Oh, no, I just lost an electron.”

“Are you sure?” the second atom said.

“I’m positive,”  the first one said.

Introduction: Table Salt versus Salt Sense

Today we are going to investigate a product called Salt Sense® versus regular table salt.

salt-and-pepper(Public domain photograph of salt and pepper by Jon Sullivan)

According to the label of the product, Salt Sense® contains real salt, but there is “33% less sodium per teaspoon.” How is this possible?

Prior to starting, answer the following questions:
What do you know about salt and its structure? How might the company achieve its claim of 33% less sodium per teaspoon? Is there 33% less chloride as well?

Materials:

  • Iodized Table Salt
  • Iodized Salt Sense
  • Microscope or hand lens
  • Petri dishes
  • Measuring beakers or graduated cylinders
  • Kitchen scale that can weigh grams
  • Laboratory notebook or paper
  • Pen for recording results

Procedure:

1. Place a small sample of table salt in one petri dish and a sample of Salt Sense® in a second petri dish. Look at the samples under the microscope.

Draw what you see for each sample. How might the differences you observe change the amount of sodium per teaspoon?

2. Calculate the density of each substance.

Density = mass/volume

Tare a measuring beaker on the scale (ask the instructor if you don’t know what “tare” means.)

Pour 20 ml of table salt in the beaker. Weigh the table salt in grams and record the weight.

Now tare the second beaker. Add 20 ml of Salt Sense® to the beaker and weigh it. Record the weight in grams.

Calculate the density of each sample. Which sample is less dense? How much less dense is it?

How might you make your results more accurate?

Related:

Manufacturer Diamond Crystal’s explanation of Salt Sense®

Check out this video about the history and chemistry of sodium chloride.

Credit: NBC Learn and the National Science Foundation (NSF)

Grow your own salt crystals at About.com

Using salt to melt ice at NBC Learn

Choosing a Chemistry Textbook

The Home Scientist, source of our laboratory kits, recommends the following texts on his website:

1. Chemistry: The Central Science (12th Edition) by Theodore E. Brown, H. Eugene H LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward

As you can see from the Amazon ad, it is pretty expensive.

2. CK-12 Chemistry, which is available for free online.

The CK-12 books are being marketed as “Flexbooks,” which means that the website has modules of text that can be put together in different ways to make a custom textbook. You can see the modules under the “Concepts” tab and the textbooks created using the modules under the “Flexbook® Textbooks” tab at the CK-12 website.

Pros: The online textbook is inexpensive (free) and the flexible content is appealing.

Cons: Reading online takes 25% longer than from a standard text. If we print out the .pdf, it will probably cost about as much as a used textbook.

Bottom line: Wouldn’t it make sense to download the CK-12 Chemistry Second Ed? We can use it as a resource, even if we decide on another textbook.

Other options:

Introductory Chemistry (4th Edition) by Nivaldo J. Tro is a popular chemistry text that is used for high school, AP and introductory college classes.

Used texts are running about $26 on Amazon right now. I learned about this from a homeschool friend whose son used it to pass AP chem.

Chemistry: An Introduction to General, Organic, and Biological Chemistry (11th Edition) by Karen C. Timberlake

Different versions of Timberlake are available, some of which are used for local community college classes.

Another option might be to use this inexpensive self-study guide, which we could supplement with online materials: Chemistry: Concepts and Problems: A Self-Teaching Guide by Clifford C. Houk, and Richard Post

Finally, there are a lot of online textbooks available (see the blog online textbook resource page).

Disclosure: I am an affiliate for Amazon, and if you click through the linked titles or ads and make a purchase, I will receive a small commission at no extra charge to you. Proceeds will be used to maintain this self-hosted blog.